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This paper presents a general and systematic numerical technique
based upon the generalized point-matching technique {GPMT) for
analyzing problems of plane electromagnetic (EM} scattering from
three-dimensional bounded objects consisting of {or modelled by)
an arbitrarly shaped axisymmetric perfectly condueting or dielectric
obstacle embedded in an arbitrarily shaped dielectric body of revo-
lution and arbitrarily disposed with respect to the propagation direc-
tion of an arbitrarily polarized incident electric field vector, The
GPMT has the chief advantage of being conceptually simple and is
amenable to solution by numerical techniques without excessive
analytical and/or programming effort. The treatment may be validly
applied to scatterers whose boundary surfaces must have no sharp
corners or edges which will introduce a discontinuity in the direction
of the unit vector normal to the core and/or outer coat surfaces.
However, it should be pointed outthat when applicable, the method
is remarkably robust and capable of providing highly accurate nu-
merical modelling predictions for the full-vectar EM wave interac-
tions with a large vaciety of arbitrarily shaped two-layered
structures. @ 1996 Avadinic Prens, Ine,

L INTRODUCTION

The first reported case of electromagnetic (EM) scattering
by a finite, 3D inhomogeneous object tor which an analytical
closcd-form solution has been obtained is the two-layered, con-
centric spherical structure of dissimilar material properties [1].
Since 1951, various new computational technigues have
emerged in numerical electromagnetics, which make it possible
to treat scattering from arbitrarily shaped, 2- and 3D inhomoge-
neous objects comprising perfectly conducting (PC), dieleciric,
and anisolropic materials. The T-matrix formulation. developed
originally by Waterman {2, 3| for the case of EM scattering
by homogeneous PC and dielectric scatterers has been extended
by Peterson and Strdm [4] to include scattering from objects
consisting of an arbitrary number of consecutively enclosing

surfaces. Bringi and Seliga [5. 6] utilized the formulation of
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Peterson and Sirtm {4] to calculate the radar cross sections
{RCSs) for both PC and dielectric obstacles embedded within
another dielectric body. The coupled-dipole method, developed
originally by Purcel! and Pennypacker [7] to approximate light
scattering by a particle of arbitrary shape has been extended
by Druger er al. [8] to analyze scattering by inhomogeneous
particles. However, the methad does not appear to be feasible,
at present, to treat scatiering by particies of Yarge size parameters
and/or permittivitics, Pogorzelski (9] presented an efficient and
quite general formulation to the problem of EM scattering from
inhomogeneous penetrable objects in order to overcome the
matrix-size difficulties frequently encouatered in the surface
integral-equation (SIE) method for particles of large clectri-
cal size.

The method of moments (MoM), developed by Mautz and
Harrington (101, has been generalized by Medgyesi-Mitschang
and Eftimuo fE] (o0 treat scattering from axisymmetrie bodies
embedded in axisymmetric dielectries. Wang and Barber |12}
applicd the extended boundary-condition method (EBCM) o
EM scatiering by watcr-coated hailstones and small chemical
and biological particles. The problem of EM scattering from
PC, rotationally symmetric bodies coated with ossless homoge-
neous dielectrics was investigated by Kishk and Shafai [13]
wsing a SIE method. The equivalence principle was invoked to
generate seven different formulations which were subsequently
reduced Lo matrix equations using the MoM. Morgan ef af. {14]
developed a hybrid method of EM scattering from inhomoge-
neous, axisymmetric penetrable bodies. Their formulation com-
bines the robust capabilities of the finite element method (FEM)
in modelling complicated internal inhomogeneous dielectric
structures and the SIE formulation embodied in the EBCM.
Yuan et al. [15] demonstrated the validity and accuracy of a
hybrid formulation, which combines the MoM when treating
the unbounded scattering problem and the suitability of the
FEM in handling complex internal inhomogeneities. Finally,
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Sebak and Sinha [16] presented an analytical solution, based
on separating the vector wave equation wn spheroidal coordi-
nates, for scattering of a plane EM wave by PC spheroids
coated with a dielectric material, for axial incidence.

It is worth mentioning, however, that each of the above-
mentioned techniques has its own range of applicability and is
suitable only for certain ranges of parameters depending on the
scatterer shape, EM constitutive parameters and scatterer size
relative to the wavelength of the incident radiation. Conse-
quently, a single generic computer progran capable of ad-
dressing all of the possible and highly diversified applications
has not been available.

One of the main objectives of the present paper is the develop-
ment of a general and systematic semi-analytical approach
based on the analytical solutions of Maxwell’s equations in
terms of spherical vector wavefunction expansions combined
with the generalized point-matching technique {GPMT) as a
tool for analyzing the EM scattering characteristics of a broad
hierarchy of arbitrarily shaped, 3D axisymmetric PC or dielec-
tric obstacles encased in a lossy dielectric shell of a second
material, when the scattering object is at an arbitrary orientation
with respect to the direction of propagation of an arbitrarily
polarized incident plane EM wave. While the analytical formu-
lations provided can be easily generalized to arbitrarily shaped
3D scattering objects, only the special category of convex/
concave bodies of revolution has been considered here because

of their physical significance. The techniques developed here, |

which are conceptually simple and amenable to solutions by
numerical techniques without excessive analytical and/or pro-
gramming effort, have resulted in the development of a highly
accurate and versatile computer code {17] that can be used in
a wide variety of applications in areas of current research inter-
est such as designing and testing of absorbing materials used
to minimize the effects of structures involved in RCS measure-
ments, radar camouflage, interpretation of polarimetric radar
signals for determining the morphology of dry and wet hydro-
meteors and predicting the potential health hazards of non-
ionizing radio-frequency radiation.

II. OUTLINE OF THE GPMT

The basis for establishing the theoretical formulation of the
point-matching technigque (PMT) is based upon the assumption
that the entire relevant domain of the scattering problem may
be divided into a number of separate homogeneous regions of
different material properties. The solution to the vector wave
equation is determined in each region, subject to the appropriate
boundary conditions on the boundaries common to any iwo
different regions.

As the name implies, the PMT refers in general to the numeri-
cal procedure in which the boundary conditions are satisfied
only at a finite number of appropriately selected points on the
interfacial surfaces separating regions of different constitutive
parameters. The PMT has been previously employed in the
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numerical solution of 2D problems of EM scattering by either
PC cylinders of infinite length [ 18), or by Infinitely long, dielec-
tric-coated PC cylinders [19], both of arbitrary but smooth cross
sections. The method has also been applied to EM scattering
by finite, 3D homogeneous PC and lossy dielectric objects,
including spheres and spheroids with small eccentricities
[20-22). To the best of the authors’ knowledge, the PMT
has not yet been extended to 3D, axisymmetric muoltilayered
dielectric objects.

The analytical formulation of the PMT begins by expanding
the scattered field exterior to the scatterer and the transmitted
fields induced internally in each layer by doubly-infinite series
involving linear combinations of basic spherical vector wave-
functions, which are the fundamental set of solutions to the
vector wave equation in spherical polar coordinates.

An obliquely incident, time-harmonic, plane wave of arbi-
trary polarization is assumed for the exciting field. The mathe-
matical description of the two linearly polarized components
of the incident wave can be accomplished easily in rectangular
coordinates. However, a complex azimuthal Fourier decompo-
sition is chosen for the two orthogonal linear polarizations in
order to facilitate the removal of the azimuthal dependence
appearing in the spherical vector wavefunctions. Computational
simplification occurs since the azimuthal and elevation modal
indices can be partiaily decoupled in the final boundary-condi-
tion equations.

The infinite modal summations for the incident, scattered
and internal fields are truncased in the numerical computations
at some finite modal indices, depending upon the accuracy
desired in the final solution. The boundary conditions, which
require in general the continuity of the tangential components
of the total electric and magnetic field vectors across the bound-
aries, are then applied to the truncated field expansions leading,
in general, to four independent scalar equations for each
bounding layer. Collocation or, equivalently, simple point
matching may be used to formulate the necessary number of
independent, simultaneous linear equations by successively
choosing representative points on the surface at which the
boundary conditions are exactly satisfied. Because of the axial
symmetry involved, each matching point corresponds to a circle
around the axis of rotational symmetry. However, it should be
emphasized that the boundary conditions may not be exactly
satisfied at poinis which are not explicitly included in the point-
matching procedure.

Another approach, referred to as the GPMT [21-24], is
achieved by selecting a number of matching points which is
typically larger than twice the number of unknown expansion
coefficients for the scattered field, and the boundary conditions
are then satisfied in the least-squares error sense. This approach
has the advantages of improving the numerical stability, reduc-
ing the average and maximum errors in the overall boundary
fit and, finally. the dependence of the final solution on the
particular selection of field matching points is significantly
relaxed (24, 251
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Once the unknown expansion coefficients have been deter-
mined, the truncated expansions of the scattered and internal
fields can be utilized to provide an approximate solution for
the complete scattering problem.

III. THEORETICAL DEVELOPMENT

{. Statement of the Problem

In order to develop a theoretical formulation applicable to
scatterers arbitrarily oriented with respect to the propagation
and polarization directions of the incident wave, two frames
of reference will be introduced, a discussion of which is re-
served until Subsection 6. Since only rotationally symmetric
objects are considered, it is often convenient to solve the scatter-
ing problem in a coordinate system coincident with the natural
axes of the scatterer.

An arbitrarily shaped, two-layered, axisymmetric body ex-
cited by an obliquely incident plane wave is depicted in Fig.
1. The right-handed rectangular coordinate system (x, ¥, 2),
attached to the set of natural axes of the scatterer, will .be
referred to as the local frame. The origin of this frame is located
at the center of the scatterer, corresponding to the point of
maximum symmetry. This will facilitate the utilization of the
rotational symmetry of the scatterer whereby the original 3D
problem can be reduced later to a series of 2D ones.

The scattering volume is bounded by closed surfaces ), and
S,, where S, encloses S,. Tt is assumed hereafter that S, and S,
are sufficiently smooth that the divergence theorem is applicable
and that the scatterer has no sharp comers or edges. Accord-
ingly, continuous, single-valued, outward-pointing unit norma!l

FIG. 1. Geometry for the problem of scattering by a dielectrically coated,
three-dimensional axisymmetric scatterer situated in free-space.
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vectors fi, and 0, are defined at each point on S, and §,. The
volume enclosed by S, is called the core region, which can be
either a PC or a lossy dielectric with constitutive parameters
L. and g,., where p,, 1s the relative permeability and &, is the
relative permittivity of the dielectric material. The shell region,
bounded by 5, and §,, is characterized by the parameters g,
and &,;. Without loss of generality, the surrounding medium is
considered to be a free-space environment with constitutive
parameters i, and g,. Since only non-magnetic materials are
considered, the permeability is assumed to be uniform through-
out the entire space, g, = g, = 1.

The scattering problem consists of finding solutions for the
electric and magnetic field vectors in the whole of the relevant
domain, which satisfy the vector wave equations and the appro-
priate boundary conditions across the boundaries of the domain
of interest.

As a consequence of the linearity of Maxwell’s equations,
one can decompose the total EM fields throughout the entire
space surrounding the scatterer (E,,, H,,) into the sum of the
known field of the incident plane wave (E;, H;), and the scattered
field (E,, H,). The incident field is defined as the field that
would exist in the absence of the scattering volume and in the
vicinity of the scatterer can be freated as a plane wave. In the
case of a dielectric obstacle, the internal field induced inside the
scatterer, (E,, H,), is the appropriate wave function of interest.

To this end, the solution of the problem is feasible, provided
that the boundary conditions

fi, X E,(r) =i, X E,4(r)

. R res (N
A; X H,(r) = i, X Hy(r)

and

iy X E,o(r) = fi, X E (1)

. . €5 (2)
n; X H:Z(r) = Iy X Hlﬂl(r)

are satisfied across the core and sheli surfaces, where (E,;, H,)
and (E,,, H,,) are the internal fields induced in the core and
shell regions, respectively. If the core region consists of a PC
material, (1) reduces to

fiy XE,r)=0. (3)

For the boundary at infinity, the electric and magnetic field
vectors of the scattered wave must satisfy Sommerfeld’s radia-
tion condition which ensures that the scattered wave crossing
the boundary of an infinitely large sphere circumscribing the
scatterer must resemble the characteristics of an outward travel-
ling, transverse EM wave to terms in the order of ™' [26],

lim r[Veuyd, XE) ~H,] =0

(4}
lim rl&, X H, + Ve/wE,] = 0,

i
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where 4, is a unit radial vector along the direction of propagation
of the scattered wave and r is the radius of a large concentric
sphere enclosing the scatterer,

2. Fourier Series Expansion of the Incident Field

An arbitrarily polarized, time-harmonic plane incident wave,
propagating in the k; direction and inclined at an angle & with
respect to the symmetry axis is assumed, The electric field
vector of the incident wave is given by

E. = BE, exp(jki 1), (5)
where k, = k(sin 64, + cos §4,), r = x4, + ya, + zi.,
ks = 2m/A is the free-space propagation constant and A is the
wavelength of the incident radiation. The complex unit vector
p describes the polarization state of the incident wave.

The incident wave direction and the axis of rotational symme-
try define the incident plane. It is convenient to resolve the
electric and magnetic field vectors of the incident wave into
two linearly polarized components (El, Hlyand (Ef, HY),
which are respectively parallel and perpendicular to the plane
of incidence as

E = @lE! + 4:E}) exp(jk; 1)

(6)

H, = 2 3£ - AlE) expl k1,
Wity

where

os 64, —

a«:

sin 64,

(7)

>
>

L
i ¥

Since the scatterer is symmetrical with respect to the azi-
muthal angle ¢, the incident wave can be decomposed into
summmations of azimuthal modes having an exp( jmd) variation
using the azimuthal Fourier-series representation {22]

=

Elr 6, ¢)= 3 eir. &) explimd)
. ®)
EA(r 6. ¢) = 3 ei(r, ) exp(jmdb)
and
ko Bl < .
i 0.g)= 250 3. en(r, @) expljmg)
)
Hi(r, 6, ¢) = 7:5»:2 eh(r, 6) exp(jme),

where w is the angular frequency in rad/s.
The spectral components, eﬂ,, and e}, can be found from
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! 1 (o .
b, 0) = 7 [ El(r, 0, ¢) exp(~jmd) do

(10)
1 o
el(r, f) = 2_#[9 EL(r, 6, $) exp(—jmd) do.

Transforming all the variables and unit vectors from Cartesian
to spherical coordinates and utilizing the integral representation
for the regular Bessel functions of the first kind [27] the integrals
in (10) can be readily evaluated and the resulting expansions
for the electric and magnetic field vectors of the incident wave
are listed in Appendix L

3. Multipole Expansions of the Scattered and
Transmitted Fields

[n general, an arbitrarily polarized EM field involves both
E-modes (TM) and H-modes (TE) and hence the scatiered
wave, in the domain exterior to the scatterer, can be expanded

in terms of an infinite series of spherical vector wavefunctions
as [22]

2 [aba M kor) + blaNS ko))

2()

El(r, 6, ¢) = =2

:=|\,-

w o

HEY(r, 6, ¢) = b

wﬂmm——'xs n> ;
[araNGiKor) + PaMEi ko],

where (ak! and bl;!) are the unknown expansion coefficients to
be determined and

M, (kr) = fi(kr) exp(jmd)

~ dP"(cos 6
[—J.m Phi(cos B, — om0 ) )54

sin @ do
(12)
N, (kr) = exp(jma) [ﬂ(n +1) f”(" )lef(coq 0A,
., dPicos 8) . m ph H
+ fulkr) { 20 Ayt 7 e Prm(cos Hd,

where the generalized function f,(kr) is the appropriate kind of
spherical Bessel functions (SBFs} of integer order =,
PI"(cos 6) denotes the associated Legendre functions of the first
kind of degree n, and order m, where Pl(cos @) = 0 for n <
m and @,, 8y, and &, are orthonormal basis vectors associated
with the spherical polar coordinate system (r, 8, ¢). The symbol
ﬁ,(kr) denotes the derivative of the product kr f,(kr) with respect
to kr, divided by kr:

Futhry = Tfn(k Nl

fildr) 13
kr
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It should be remarked that complex linear combinations of
the spherical vector wavefunctions, in the form of (“‘even” +
J “‘odd’’), have been chosen in (12) similar to the form listed
by Morrison and Cross [22]. The superscript 3 in {11} is used
to denote that SBFs of the third kind; i.e., spherical Hankel
functions (SHFs) of the first kind A(k,r), are used for the
radial functions.

Fields arising from the expansions given in (1!} involve
outgoing spherical waves at large distances form the origin and,
hence, satisfy the radiation condition as stated in (4} since {27)

Tim A (kor) = (—j)" exp{ jkor)
e kgr
7 (14)
lim — Lo (kor)] = (-~ jyr SR,
e kgr kgf'
In the general case of a dielectric core region, f" = j(k;r)

are the only admissible radial-function solutions without a sin-
gularity at the origin, where k, = Vi, k; is the propagation
constant inside the core region. Therefore, the following expan-
sions are assumed for the fields internally induced in the
core regiof:

Elf = Z §:k MUKk ) + dbEND (k)]
m=—m n>!m
n=0

(15)

Hp = £y 2[¢mmmn+dMMmmoL

w,ua = rr>lm

In the intermediate shell region, both the SBFs of the first
kind j(k,r), where k; = Vg,.k; is the propagation constant in
the shell region, and SBFs of the second kind, i.e., spherical
Neumann functions y,(kr) are well-behaved. Thus, it is neces-
sary to write the general solution for the internal field induced
in the shell region as a linear combination of them in the form

Elif = — i

[Pﬂ%ﬂ!Mgﬁ(kzr) + QMM%UC:")
m=e ol
+ b NG (kyr) + vENG (k)]

3 o

Hf';l = J_k-’-- z

WLy m=—o n=|m
L2t

(16}
[PMN%(kzr) + qi‘;iNSEA(kzr)

+ ubi M k) + vhi M2 (k)]

The r, £, and ¢ components of the electric and magnesiic field
vectors of the scattered as well as the internal fields induced
in the core and shell regions, which have been obtained by
substituting the expressions for the spherical vector wavefunc-
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tions given in {12) into (11), (15), and (16), respectively, are
listed in Appendix II.

4. Imposing the Boundary Conditions

Let r and r, designate the length of the position vectors
which are directed from the center of the scatterer to the inner
and outer surfaces S, and §,, respectively. They are defined by

n =58, n=AhHH) (7
for0=0=rmand 0 = ¢ = 27

The geometrical form of the S, and S surfaces, which enclose
the core and outer shell regions, respectively, are then described
by the following functions in spherical polar coordinates:

gl(r’ 8) =n
&r ) =r;

~ (8 =

(18)
~f(h =
The outward unit normal vectors i, and fi; on the surfaces §,
and §, are found from

/

The boundary conditions, which require the continuity of the
tangential components of the total electric and magnetic field
vectors across the surfaces §; and 5;, can be expressed in terms
of the following operator equations:

1 dﬂ(ﬂ}

m=%@m—f j%@

1 dfz(f?)

dfi(6y |
fi, = Vgir, th = (A l_'_fZ( )

(19)

A, x {El(r) — El ()} = 0
re s, 20

fiy X {Hiry — Hi (0} = 0

fiy X {ELH(r) + EM(r) — Elt (1)} = 0
res,. 2n

fi; X {HH(r) + HH(r) ~ H¥(m} =0

Furthermore, if the surface 5, encloses a PC-core region,
then E}! vanishes and the operator equations given in (20)
reduce to

i, X Bl =0, reSs, (22)

When expressed in spherical polar components, each of the
functional conditions represented by a single operator equation
results in two independent scalar equations. Hence, the follow-
ing eight equations for the r, 8, and ¢ components of the field
vectors, which are valid everywhere on §) and 5, are obtained
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Eirlll‘p? B) = EU s(rys o)
Hg‘w(fls 8) = H[}‘z o7 o)
dfi(0
Ell‘leb(rh &) + l fl( )Elsi (l"h &)
! dﬁ(ﬁ)
= Eb(r;, 8) a0 El(ri, 8) 23)

1 dfi(
Hg‘l‘hﬁ("h é) + ;MHllr(rls &)

1

B(rn &) + ! fl( ) Eer(rla 9}

and

Eli(r. 6) + Eb(r, 6) = Eldu(rs, 6)
H‘.‘:ﬁ("z\ &) + H”l(?'zs 6,) = HI;'* (T2 &)

i dfz( &

Ey:d‘(’bv th} + EL’Z#(”L ) + - [E F(r, 6) + E"J'("z, )]

lfz()

(72, 65) + a0 Eli(r, 6)

d
Hl:'lé("zs fh) + H (’”2: &)+ l_é@[ﬂ Hry, B+ H.Hc‘.f(fz, &)}

g(rg, 9’1) + l f( )

F2

!'ﬁ(’" 2, B, (24)

In the special case of concentrically coated spheres, the or-
thogonality of the surface harmonics, P7{cos 8) exp(jm¢), can
be invoked to provide analytical solutions for the set of eight
unkaown expansion coefficients from the system of equations
given in (23) and (24). However, the general case of non-
spherical bounding surfaces cannot be solved simply in the
same manner since the infinite set of boundary-condition equa-
tions are coupled because of the angular dependence of the
radial functions (r, and r; are functions of ).

Upon substituting the #, 8, and ¢-components of the incident,
scattered, and internal field vectors into (23) and (24), it turns
out that all the terms in the resulting double sum, over the
azimuthal and elevation modal indices, are multiplied by
exp(jmd). The ¢-dependence of the boundary conditions can
therefore be removed when these equations are multiplied by
exp (—jme) and integrated with respect to ¢ over the range
from 0 to 27. Consequently, the azimuthal modal index is
partially decoupled from the resultant system of boundary con-
ditions, which for every m mode (where m = 0, 1, 2, ...) can
be writien as shown in Appendix 1

In view of (1.1} to (1.4), (1111}, and (T11.2) it can be shown that
the following relationships exist among the unknown expansion
coefficients for the two orthogonal polarizations of the inci-
dent wave:
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"—mn = ‘alllﬂn b“’mn = brrlnn
CH—mn = _cl}m d[l—mn = dgmx
o ] 25)
P = T Pmn Wimp T Ump
q”—mn = _qynu U”—-mn = Ulwlrm
and
bl = ~bp Alwm =
dimn = ﬁdf#ﬂ cimn = erﬂn
26
Wl = ~Uin  PLn = P o)
Vi = ~Vin G = Gome

Therefore, only non-negative values of the azimuthal modal
index are to be considered in the numerical implementation of
the technigue.

To this point the extent of the double summations in the
expansions of the incident, scattered, and internal fields is as-
sumed to be infinite. The azimuthal modal index m varies from
—o0 to oo, while for each m the elevation modal index, #, runs
for |m| to oo. Practically, only a finite number of terms is
considered in the numerical analysis. The infinite modal sum-
mation over the elevation modal index is truncated at some
finite index n = N, whose value 15, in general, independent of
m, while depending on the shape, composition and size of the
scatterer. Thus, for a given azimuthal modal index m, we
are left with N, unknown expansion coefficients, where N, =
8(Ng— m + 1 — 8,), and 8,4 is the Kronecker delta.

We note here that the boundary-condition equaticns given
in (I11.1) and (I11.2) are valid everywhere on the S, and §;
surfaces. However, instead of enforcing the boundary condi-
tions across the whole of the §; and $; surfaces, the equations
required to solve for the N,, unknowns are formulated by satis-
fying the boundary conditions, in the truncated system of (1111},
only at a discrete set of points. In our case of rotationally
symmetric objects, the only necessary condition for the selec-
tion of matching points is that they should lead to independent
equations. This can be satisfied by successively selecting L,
boundary points along the 8 direction, across the core and shell
surfaces, which are given by 6,i =1, L,,, where L, = N, /8. The
point-matching procedure mentioned above has to be carried out
for all the number of significant azimuthal modes, which are
necessary for convergence, starting from m = Q up to m = M,,
where M, is not necessarily equal to N,.

It should be pointed out that in this approach the boundary
conditions are enforced only at a finite number of selected
points on the §; and S, boundaries. The behavior of the fields
at pomts not explicitly included in the point-matching procedure
may be quite different from what is required by the conditions
stated in (20) and (21).

For a given azimuthal modal index, the resultant system of
boundary-condition equations can be written in matrix form as



348

A ek =pi, 27
Here, A;; is an 8L,, by N,, complex matrix and is referred to as
the system matrix, the elements of which are explicit functions
of the shape, size and dielectric properties of the core and shell
regions as well as on the frequency and particular selection of
matching points. The elements of A; are independent of the
propagation and polarization directions of the incident wave.
For each of the two orthogonal incident polarizations, the N,.-
element column vector ¢/t contains the unknown complex-
valued expansion coefficients of the scattered and internal fields.
The 8L,-element, complex column vector b¥ depends on the
orientation, polarization, and frequency of the incident wave
as well as the shape and size parameter of the outer shell surface.

For the purpose of reducing the dependence of the final
solution on the particular selection of matching points, the
boundary conditions indicated in (I11.1) may be approximately
satisfied by choosing L, > N,/8, and the expansion coeffi-
cients are then determined by minimizing the mean-squared
error in the boundary fit over a set of points on the §; and
S, surfaces, rather than over the entire surfaces. Thus, using
the notation of vector norms, for each m = 0, 1, ..., M,
our problem consists of minimizing the least-squares matrix
equation minf)A ¢kt — bI{, with respect to the vector of
unknown expansion coefficients ¢}*, where the |||j, symbol
indicates the Euclidean 2-norm.

Since the matrix A;; for a given scatterer in a fixed orientation
is independent of both the incident polarization vector and the
orientation of the scatterer with respect to the direction of
propagation of the incident wave, once the matrix A; has been
factored, the results obtained from either the Cholesky or the
QR-decomposition for a particular orientation are written to a
file for later use. For another scatterer orientation and/or inci-
dent polarization, it is relatively inexpensive to compute only
the elements of the vector bl and to solve the resultant triangu-
lar system of equations as the factorization of the matrix A,
which consumes most of the total computational time, has been
accomplished. The efficiency of this strategy becomes apparent
when the differential scattering characteristics of a given scat-
terer for various incident angles are required over different
scattering planes. .

5. Definitions of Fundamental Scatiering Parameters

Once the approximate values of a finite number of the scat-
tered field expansion coefficients ak! and b} have been deter-
mined, the scattered field in the near and/or far-zone radiation
regions and the various cross sections of interest may readily
be evaluated. An elliptically polarized EM plane wave propagat-
ing in the k; direction is assumed, where

Kk; = Ky(sin 6, cos ¢, + sin ¢ sin ¢, + cos 84,). (28)

If the scattered wave is observed in the Kk, direction, the

incident and scattering directions will define a plane which is
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commonly referred to as the plane of scattering [28]. The elec-
tric field vector of the incident wave is resolved into two linearly
polarized components, which are parailel and perpendicuiar to
the scattering plane, respectively, as

E. = (£la} + Etat) exp(jk;- 1), 29)
where
alx ar =k, (30)
The orthonormal basis vectors al and &1 are given by
al = cos O(cos HA, + sin hA,) — sin B4,
' (31

il = —sin $A, + cos dA,.

At a distance r > 4*/A, where a is a typical maximum linear
dimension of the scatterer, the scattered wave is approximately
transverse (E, -k, = 0) and behaves as a local plane wave
having the form

E, = (B}l + B4y exp(jk, 1), (32)
where only terms in r ! are retained and
k, = ky(sin 8, cos ¢4, + sin &, sin 8, + cos 6,4,). (33)

The basis vectors 4! and 4; are given by

=
i

cos B(cos A, + sin P,4,) — sin A i,
(34)

==
“
I

—sin ¢, + cos P,

The amplitude, phase, and polarization of the linearly polar-
ized components of the far-field scattered wave can be described
in terms of the corresponding components of the incident field
vector by introducing the scattering function matrix which will

assume the form
[El\] _ eXpUk,-T) I;il,ll fllle[ElJiI
E? r o fiddLER D

where f,(8,. ¢,; 6., ¢) is the ratio of the scattered wave compo-
nent with polarization [ observed in the direction (&, ¢.), to
the incident wave component, with polarization j, impinging
in the direction (6, ¢,). With regard to the scafterer geometry
shown in Fig. |, the components of the far-field scattered wave
are obtained from (11) using the asymptotic representation of
the SHFs, as given in (14), which finally yields the expressions
for the elements of the scattering function matrix,

(35)
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; M, N
fu=1 > 2 (e,
0=y

dPm{cos 6,)
de

nt
Liﬂ . Pricos Bs)af',m + bﬁn,,] cos(md,)

My Ny

1 .
Jie = P > > (e,

0 m={ n=m
nl

dPMcos 6) b

m me e 1 - 1
[ n 6, Pr(cos B)at, + " ,,m} sin(md,)

sin
! M, N,
fJ..| =7 2 E ("J‘)ﬁzﬂm
kn m=0 n=m
n#Ed
dP7(cos 6) 1 m .
e 4+ = pm i
[ e Pr(cos )by, | sin(md,)
! My
fro =1 2 (—/y*'e
kﬁ m=0 n=m
n=d
dPl(cos B,
[—(de—) @i+ = PRcOs eab,tn} cos(md),
(30)
where
I, m=0
En =19, 1s the Neumann’s factor.
2, m

The scattering cross section, which is defined as the ratio of
the total isotropically scattered power to the incident power
flux density on a unit cross-sectional area of the scatterer, is
evaluated from the following expression [22]:

Qr =

_Ar < i n(n + D(n + {m)! ke + (b))

IREWE R n== (2n + 1)n —~ {m|)!
(37)

The optical theorem [29] is used to evaluate the extinction
cross section, which is the sum of the scattering and absorption
cross sections, in terms of the imaginary part of the scattering
amplitude function in the forward direction,

47
o = - Im{ sk, k)
47 (38)
g; = 7{‘ Im{ £, (ki k)l
D
The absorption cross section is then determined from
ol = o — o, (39)
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Other interesting parameters are the differential scattering
cross section, in units of area per unit solid angle, which is
defined for a unit incident electric field vector as the scattered
power per unit solid angle in the direction k;, divided by the
incident power flux density in the direction ki, and is given
by [30]

oW, b 8, ) = [EI?

i (40)
U:}L(Bs, (;bs; 61', ﬁf") = |E;L|-
and the backscattering cross section,
O}t = dmolt(m - G, 7w+ B 6, P). (1)

6. Transforming the Angular Scattering Pattern from Local
to Principal Frames

In many practical applications, the axes of the scattering
object typicaily follow a prescribed orientation distribution and
therefore it is essential to generalize the previously derived far-
field scattering solution to deal with the case of an arbitrarily
oriented scatterer. This is accomplished by introducing a second
frame of reference, the principal frame (x', y', z). It is often
convenient to formulate the scattering problem in the principal
frame, where the incident wave direction defines the z'-axis as
shown in Fig. 2. The x" — y plane contains the incident electric

A

FIG. 2. Scattering geometry showtng the local (x, ¥, z} and principal{x’,
¥', z') frames. The direction of incidence is 7', the symmetry axis of the object
is z and is oriented at angles (8,, ¢y ). The incident field makes and angle 7
with respect to the positive x-axis.



350

field vector which is, in general, inclined at an angle =, with
respect to the x’-axis. The direction of the symmetry axis, which
is specified in terms of the elevation and azimuthal angles &
and ¢, respectively, defines the orientation of the scatterer in
the principal frame. It is required to determine the angular
scartering pattern in the x' — 7z’ plane of the principal frame
where ¢, is either O or 77, while 6] varies in general from 0 to
27. In establishing the following mathematical formulation, a
procedure similar to the one given by Barber and Hill {30] will
be followed.

The electric field vector of the incident wave is decomposed
into two linearly polarized components, El' = E; cos na, and
E}! = Eysin .

The components (El and E}*) of the incident wave must be
transformed to the local frame of the scatterer, where the bur-
densome operations of the scatiering calculations are per-
formed, before they are applied to the scaitering matrix given
in (35).

The position vector of a point P with coordinates (x, y, z), in
the local frame, can be expressed in terms of the corresponding
coordinates {x’, y', z') in the principal frame using the Eulerian
angles of rotations which lead to the following transformation
matrix, [T],

X X
y{=1r1y |,
Z 4'

where
—cos ¢ycos B, —sin dycos B  sin G,
IT) = sin gy —cos ¢y 0 (42)
cOs ¢y sin 6, singysiné, cosh,

The incident wave, the electric field vector of which lies in the
x' — y" plane, is described by the orthonormal basis vectors,
k=4, al=a4a, a*

oA
i —a,v'a

where &l and &+ are unit vectors along the polarization direc-
tions of the incident wave. The corresponding polarization vec-
tors in the local frame (&', 4+ can be found from

.. axk Al .
4} =--—— = sin pya! — cos e}
1A, > ki
(43)
al =4 x k! = — cos dal — sin el

Hence, the transformation of the components of the incident
electric field vector from the principal frame to those in the
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local frame can be written in the form

£ —cos gy —singy || EN
= | (44)
E+ sing, —cosdy || EF

The rectangular components of a unit vector K; , in the direc-
tion of observation of the scattered wave, are given by

x' = sin & cos ¢,
45)

' =cos 6.

The corresponding components in the local frame can be
found from the transformation matrix in (42) as

X = —¢os ¢y cos fysin & cos ¢ + sin 8, cos O

v = sin &, sin & cos ¢! (46)

7 = COS ¢ sin 6, sin & cos @) *~ cos Oy cos 6.

The scattering angles (8;, ¢}, required in the calculations
of the elemeunts of the scattering function matrix in (36), are
found from

g, = tan~(Vx? + v¥/z)

(47)
¢, = tan~'(y/x).

With the fractional components of the incident electric field
vector (E! and E}) and the scattering angles (6,, ¢,) being deter-
mined, the final parameter required for the scattering calcula-
tions in the Iocal frame is the angle of incidence #;, Substituting
8 = ¢! = 0 into (46), then it follows that 8, = 6,.

Once the elements of the scattering function matrix in (36)
have been computed in the local frame, the components of the
scattered eleciric field vector must be transformed back to the
principal frame. In the far-field region, the transverse compo-
nents of the scattered wave in the local frame and the associated
orthonormal polarization vectors were given previously in (32)
to (34). Similarly, the electric field vector of the scattered wave
in the x” — 7z’ plane of the principal frame can be written as

E, = Elal + E} a8}, {48)

where
af = cos 0 cos ¢/a, — sin 04,
al = cos $ia,.

Note that E, and E{ have been specified relative to different
basis vectors; however 4, — &,, since the two frames have a
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common origin and, hence, the transverse polarization vectors
(al', a+") and (al, 41) are all coplanar.

The desired transformation can be achieved easily by a 2D
counterclockwise rotation about the radial vector &, as

EV cosy siny {| £
= _ , (49}
E —smy cosy |l EL

“ i

where

siny = al-af = —ar-al

i
f=~¢]
“
0
=

cosy = al - &

In order to perform the dot products indicated above,
(al, aL) are expressed in terms of a,, fi,, and 4, by substituting
the inverse transformation [T]™' to (49) which finally yields

COS Y = COS &), COS o, sin ¢hy cos By — Cos ) cos dy cos o,

siny = cos & cos ¢ sin ¢, cos 8, cos ¢y (50)
+ sin B sin ¢, sin & + cos & cos ¢ cos ¢, sin .

Thus, given a scatterer with orientation 6,, ¢, relative to the

principal frame, the angular scattering pattern can be deter-
mined in the x" — z’ plane of the principal frame from

E¥ _ ) cosy siny || fu
EL B —siny cosy fuy fis
- (5D
| - cos ¢y —sindy || EV
i sindy, —cosdy || EX
1V. SUMMARY

This paper presents the formulation of a computationally
convenient procedure aimed towards extending the GPMT in
the context of the analysis of 3D EM scattering and absorption
characteristics of rotationally symmetric, PC, or dielectric ob-
stacles embedded in axisymmetric, lossy, or lossless dielectric
chjects of arbitrary shape and arbitrarily disposed with respect
10 the direction of incidence of the impinging field, The method
described here is capable of providing numerical results of
controllable accuracy for two-layered objects of arbitrary geo-
metrical surfaces for which analytical techniques, which may
be obtained via the method of separation of variables, are either
non-existing or analytically intractable particularly when the
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scatterer surface does not coincide with a constant coordinate
surface in an orthogonal coordinate system in which the Helm-
holtz scalar wave equation is separable. Also, these solutions
are essentially required when the scatterer dimensions are com-
parable to the wavelength of the incident radiation and where
both the low-frequency Rayleigh approximation and high-fre-
quency geometrical theory of diffraction techniques fail to yield
reliable resulis. The particular choice of elementary spherical
vector wavefunctions as basis functions has both advantages
and disadvantages. Their chief advantage is that they represent
a complete set of analytical solutions to Maxwell’s equations
since they are constructed from the exact eigenfunction modal
solutions of the scalar wave equations, the individual elements
of which are extensively tabulated. Other advantages are that
they do not require extensive numerical computations and that
they lead eventually to general and elegant computer codes
which can be easily adapted for solving a large category of
scatterer shapes. The relative disadvantages include the fact
that scatterers with corners and/or edges cannot be tackled
directly and that the method encounters obvious convergence
problems for scatterers whose bounding surfaces depart sig-
mificantly from a spherical shape such as for spheroids of moder-
ately large (=4) and small (=0.4) axial ratios.

1t should be mentioned that our GPMT matrix-equation for-
mulation of the boundary-condition relations has been devel-
oped in such a manner that the elements of the overall system
matrix are independent of the orientation of the scatterer as
well as the polarization and incident directions of the incoming
field vector. This leads to better computational efficiency and
substantial saving in computer time and storage particularly
for objects arbitrarily oriented with respect to the direction of
propagation of an arbitrarily polarized incident field.

APPENDIX I

El, = —Elexp(jkyrcos B;cos 8) >, j"

=@

[ Jokor sin 8 sin 8) sin 6, cos 6

+ jJ 1 kor sin 6, sin 6) cos 8, sin 0] exp(jme)
Ely = Elexp(jkor cos 6cos ) >, j

[ Julkyr sin 6, sin &) sin €, sin &

— jJ o (kyr sin 6, sin ) cos 8; cos B exp(jmd)

=—or

Eif‘¢ = E[‘ cos Oexp(jkyr cos 6,cos §) 2 jmm

J,(kor sin B sin 6)

[.1
kor sin G sin @ &b

exp(jmd)
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EL = —E? sin Gexp(jkyrcos 6, cos ) Z o

m=—c

Ja(kyr sin 6, sin B)
kyrsin 6, sin 6

exp{jime)

E#y = —E?* cos Bexp(jkyr cos 0; cos B) z Jmm

m=—m%

J(kor sin 8, sin 6)
kyr sin 6, sin 8

xp(jmd)

El,= —E} exp(jkor cos 6,cos 8) >, j™/

m=—x
(kqr sin @ sin ) exp(jmd) (L.2)
and
i~ By
T opg Ef
|
po e B
}iiﬂ &uLulzfliﬂ
k E
(A g By -1 §
Hly= o 2o By (1.3)
HE = :’Ef:!_l
Lr (O,U.{,\ E!‘ ir
_—hE
Hi = oy B El,
—ko EF
Hiy = — ﬁz = H, (1.4)

where J,, is the ordinary Bessel function of the first kind of order
m, the prime denotes derivative with respect to the argument and
an additional subscript has been attached to denote the r, 6,
and ¢ components of the corresponding field vectors,

For the particular case of an incident plane wave propagating
along the axis of symmetry of the scatterer, all of the azimuthal
modes vanish except for m = =1, Special attention should be
devoted to the evaluation of the incident field expansions given
in (I.1} and (1.2} due to the singular behavior of the functions
J(x0)x and J,(x) when x = 0. The resulting expressions are
found to be

E',l,, = Elh sin A cos @ exp(jkor cos 8)
Ely

Elcos §cos ¢ exp(jkorcos ) (L.5)

Etf.gs = —Eﬂ sinl ¢ exp(jkor cos &)
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and

EL = Etsin @sin ¢ exp(jkyrcos )

Ef; = Ei cos 8sin b exp(jkor cos 6) (1.6)

El, = Et cos drexp(jkyr cos 0).

APPENDIX I

B} = - i }% Ban(n + 1) o (k" )PL’"'(COS 8) exp{jmd)

m=—m a=\m
n#0

oo ©

P 7)
Bi=-3 Z!{jma“hmtk )—(‘;—O;—)

n#0

dPI"(cos 6)

+ b/ Pk ——

} exp(jmd)

o =

dP'l(cos 6
=3 3 {ﬂﬂ,;,ihf’(ko!')—f;—g‘—)
m=-% n=ml

n#ED

PlPe
— jmblt fky )_’LT;T)} exp{ jmd) (L1
HiL = 2 aln(n + 1) L ( ° )PIMW(cos 6) exp( jme)
ml-L() m=— .rxjé[m
T dP"(cos 8)
His = 4% { FO o) ——
? (Dﬁtumggw é;;\ 11 ¢ ) deg
nEQ
p(mf
+ iR ko) —(—;_)} exp(jmdb)
e SO |(cos )
HL[,L L { mallj. ) kpr) S —
4 wm'ﬂ;w% Jmal P k) ~— =

dP"(cos 8)

— Bt hO(k
(ko?) 46

} exp{jma). (IL.2)

The r, 8, and ¢ components of the internal field induced in the
core region are similar to those listed in (I1.1} and (I1.2) with
ky, ko), chioand dbl replacing ko, A(kor), alt, and B, re-
spectively. For the shell region the field components are
given by
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Hlf, = Sk > 2 a(n + 1}P"(cos 6)
WL p=—o0 n=|m]
n#0
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(I1.4)

APPENDIX I

2 Cl mﬂcni + Dl,mndrr'ﬁj. + Pl,mn nl + lenq
nzlm|

s

+ Ul,m”u“ﬂ‘l# + V]_mﬂvunlii = D

353

E Vv £ (Di nmcmﬂ + Cl mﬂdﬂri#) + v r"(UI mnpmn + Vi nmqifnn

n=jm

n%ﬂ
+ Ql.mnv ‘,I,,f',) = 0

2 Crpulhi + Dapedlbit + Prpophs + Qs ol + U il
n=|m
n#E

L
+ P l,mnuUim

+ VJ mnvmn 0
2| \/——(Dl mnC"l + C},mndlrln;‘;) + v (3% (UW mnpmn + V’; mnq”l
=
+ P?mnu‘!l + QJ el "l) 0
and

2 Ai,mna‘“_ + Bii:n'rib”L + Pimnp"l + Q.S mnq.'mi
n= m\

LEa)

+ US,mnM"’ + Vi umvmn - R!,ﬁ
2 BS lﬂna‘rlv#\- + AS,mnb”J- + (US mnp”i + VS mﬂqmn
i

+ PS,man!:i# + QS.an Frlnfi-) = RE:JI;!

(IL.1)

2 A'.' muamn + B'ﬁ manJ!n# =+ P’F mnp‘“- + Q'J.muqll!;ri—
"

+ U'fmuulv’v'!f{ + VT mnv!lni = RlH’r_l

Z, B'I maumn + AT e rlnt + N (U'.' bl + V'!.mnq gn.Jr:_
n=lm]

n#EQ
+ P’i nmu“l + QT.an Un{;) = RQ;;:
where
_ dPIM(cos 6)
Cro = Jullyr1) T
Pl(cos )
— —hm F _na
Dlmn ]mf (kl T) n H
) a'Pl:"‘(cos &
len = tjn(kzrl) T
dPIcos )
len = _yn(k‘?rl) T
Plilteos @)
Ui,mn = ﬂfn.f l)(k2r]) —Té_
Plricos )
Vi = jinf2kr) “eind
Plrlicos #
C3Jun = -;jmjn(klrl) ‘R—(__—__)
nt



354 AL-RIZZ0O AND TRANQUILLA

dPI™(cos 6)

Dy = —f (k) 7

1 dfl(ﬂ)

1"1

fn(klrl)

n(n + 1) === Plicos 6)

P, = ik )Pl:"'(cos 8)
mn — JHLjnA Kot ——sin P

dP"(cos )

do
Ll 1 dr(® Jn(kl 1)

+1

r, de n(n e
dPl(cos )

do
TP
1"1

2

Uspw = fer)
Plrcos @)
Vi = f20kr)
Pll(cos 6)

dPLm! cos 8
Aspn = HP(kgry) “—(“_*2

dae
Pl(cos @)
By, = — i fOUkors) “nd
) dP(cos 0
Ps,mn = _]n(kzrz) T_z
dPYcos 6)
e =~ Yulkots) ————
Qs Yulkors) 40
Pri(cos )
Us n = —jmfkors) —ind
Prlccos 6)
— i O Dnattc &y
vj,mn Jmf (kZ 2) n 9
P ¢
A?,mn = _fmb“)(kﬂ .’.)4—((:’_95—‘1
sin 6
8,0, [fm( kor) dP"(cos )
a8
k(]\
¢ LA ) B ) ( %) pi(cos 9)]
¥y dg
Pl(cos 6)
P?.mn jmjn(k2r2) _TB_
Pliicos 6)
Q’?,mn J my n(kﬁr’) T
dPlrl(cos @
U'Lmn f( )(k r3) _*%9‘_)

+ Ldf(6)

+ [rm]
rz Py n(n + 1)P(cos §)

dPVi(cos &)

V'.i,mn = ﬂz}(erZ) dﬂ

+ 1dR6)
r2 dg

yn(klri)
f(zrq

nn+ 1) ——=
RY, = j"™2ElJ 1 (kor; sin # sin 6) exp(jkor; cos 8, cos 8)
Rz, = jm"VEF T (kyrs sin 6, sin 0) exp(jkor, cos 6; cos )
R, = jEM i(kyry sin 6, sin 6) exp(jkyr, cos 8 cos 6)

me(kgrg sin B,‘ sin 9)
kory sin B, sin 8

Ri, = j""Ef cos 6,

Rl = —j™EWN 1 (kyry sin @, sin ) sin @ sin &

— J i {kyry sin §; sin ) cos 6, cos 6

l

. dﬁ(ﬁ) { Jo(kory sin 0 sin @) sin &, cos 6
2

+ jJ . (kory sin 8; sin ) cos € sin 6)
exp(jkyr, cos 6;cos 6)

md ,(kyrs sin 8, sin 6)
kyrs 5in 8; sin 6

(cos 6+ :2 )2'(8 ) sin 6) exp(jkory cos & cos &)

R = j"E}

1l mtt (ko sin 8 sin 8)

Ry, = . ,
L ' kyrysin 6:sin @

(cos -+ . fz(9) === gin 9) exp(jkyr, cos 8 cos 6)
2

R, = j""'E} [Jm(korz sin 8, sin &) sin &, sin @

— jJ wlkor, sin 6. sin 6) cos 6,cos 8

_ 1dfi(6)

{ Jlkors sin @ sin @) sin &;cos @
r, do

+ jJ n{kora sin 8;sin 6) cos &, sin 9}]
exp( jkor» cos 6; cos ).

REFERENCES

1. A, L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (195]).
2. P. C. Waterman, Proc. IEEE 83, 805 (1965),

3. P. C. Waterman, Alta Freq. 38, 348 (1969).

4. Bo. Peterson and S. Strom, Phys. Rev. D 180, 2670 (1974).

exp{ jkors cos 8;cos 8)

(I11.2)



GPMT. L. THEORETICAL

. V. N. Bringi and T. A. Seliga, IEEE Trans. Antennas Propagat. AP25,
575 (1979).

6. V. N. Bringi and T. A. Seliga, Ann. Telecom. 32, 392 (1977).

. E. M, Purcell and C. R. Pennypacker, Astrophys. J. 186, 705 (1973),

. S. D. Druger, M. Kerker, D. S. Wang, and D. D. Cooke, Appl. Opt. 18,
3888 (1979).

. R. I. Pogorzelski, [EEFE Trans. Antennas Propagat. AP-26, 616 (1978).
. I. R. Mautz and R. F. Harrington, Appl. Sci. Res. 20, 405 (1969).

. L. N. Medgyesi-Mitschang and C. Eftimita, Appl. Phys. 19, 275 (1979},
. D. 8. Wang and P. W. Barber, Appl. Opr. 18, 1190 (1979).

. A, A, Kishk and L. Shafai, JEE Proc. 133, H, 227 (1986).

. M. A, Morgan, C. H. Chen, S. C. Hill, and P. W. Barber, Wave Motion
6, 91 (1984),

. X. Yuan, D. R. Lynch, and J. W. Strohbehn, /EEE Trans. Anfennas Propa-
gat. AP-38, 386 (1990).

. A. R. Sebak and B. P. Sinha, JEEE Trans. Antennas Propagat. AP-40,
268 (1992).

. H. M. Al-Rizzo and J. M. Tranquilla, J. Comput. Phys. 119 (1995).

18.

19,
20.
2L
22,
23,
24,
25.

26.

27.
28.

29,
30.

355

C. R. Mullin, R. Sandburg, and C. Q. Velline, /EEE Trans. Antennas
Propagat. AP-12, 141 (1965).

H. Y. Yee, IEEE Trans. Antennas Propagar, AP-12, 822 (1965).

Y. Mushiake, J. Appl. Phys. 27, 1549 (1956).

T. Oguchi and Y. Hosoya, J. Radio Res. Lab. Japan 21, 191 (1974).
J. A. Morrison and M. J. Cross, Bell Syst. Tech. J. 53, 955 (1974).
C. Hafner and N. Kuster, Radio Sci. 26, 291 (1991).

A. C. Ludwig, /EEE Trans. Antennas Propagat. AP-34, 857 (1986).

K. Joo and M. F, Iskander, [EEE Trans. Antennas Propagat. AP-38,
1483 (1990).

R. S. Elliot, Antenna Theory and Design (Prentice—Hatl, Englewood Clitfs,
Ni, 1981).

I, A. Stratton, Electromagnetic Theory {McGraw—Hill, New York, 1941).

A. Ishimaru, Wave Propagation and Scattering in Random Media, Yols.
I, 1T (Academic Press, New York, 1978).

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1981).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational
Merhods (World Scientific, Princeton, NJ, 1990).



